

ADVANCED Renewable Energy Optimization

Clear defined objective

AREO uses its own **cutting-edge software** that provides **optimal sizing and operation** of a renewable energy system through **accurate mathematical models**.

We find the **optimal operation of the energy storage** system according to **mixed markets at once**: spot / PPA / other contracts for a **broad variety of energy storage technologies**.

Battery (2h) operation with 80% depth of charge limiting maximum cycles in a year to 365

Total input /output power of the optimized power system

Attractive visual results

We **optimise** the **project** in terms of any chosen objective function e.g. **NPV**, **IRR**, **LCOE**, **NEH** ... this obviously leads to a very convenient **strategic position**. As a result, an **optimal mixing of renewable systems** is found within an **attractive visual frame** that gathers an infinite variety of optimal combinations.

From these maps, any convenient optimum combination can be chosen **at first sight**.

Maps for hydro project with 8h of storage

Cutting-edge mathematical model

We can model **any type of storage system** and incorporate **every market at once** with **any timestep**.

We do the unintuitive work with **energy shift from price valleys to price peaks**. This can be seen when grid consumption is prohibited (avoiding grid taxes).

Secondary regulation market example

We can model **any type of market that can be described by a price curve.** Secondary market modeling is shown below:

The cleared secondary power quantity has been randomly set between 0% and 100% of the total secondary band according to the SO requirements depicted in the plot. The battery can charge either from the hybrid power plant, from the grid or from both at the same time. Further constraints in this regard as grid restrictions can be applied. If we **vary the** percentage of the cleared secondary power (**utilization**) maintaining it constant in time with same simulation parameters we can obtain the **market incomes thresholds** and when the different markets become more or less **dominant** w.r.t. others.

1:1.5:0.75/4h wind/PV/storage proportion (80% DoD)

Infinite possibilities

We also **solve the load following problem**, e.g. when prices are higher (or any other rule) and buying/applying energy shifting when low giving **maximising the load matching**.

We provide valuable information from data post processing to determine and understand any hidden behaviour by statistical analysis.

Fourier and reinflow analysis to determine relevant storage cycles

1:2:1 wind/PV/storage proportion (100% DoD, 8h)

Advanced electrolyzer model

For projects in which a **demand of chemical product** must be fulfilled, AREO offers an advanced electrolyzer model to precisely obtain a **demand coverture** at a **minimum production price**.

After the **optimizacion of the ope**ration has been performed, the sheet of results offers a **simplified gathered data** for an easy verification of the **financial performance**.

High quality report

We deliver our clients high-tech, clear and easy-to-read reports, that combined with the output datasheet is fully traceable and auditable. The minimum essential report length is 14 pages.

Computed data series as well as the **economical analysis** from the optimized case are presented through the five sheets of the **output excel sheet of AREO**.

4	A		в	с	D	1	E	F		G	н	1	J	к	L
1	Dat	te	Price Series [€/MWh]	Price UF band [€/MWh	Price DOWN band [€/MWh	Hyb pr	orid power oduction [MW]	Storage g input pov [MW]	rid ver ir	Storage urtailment put power [MW]	Storage grid output power [MW]	Storage grid output secondary regulation power [MW]	Storage grid output secondary regulation UP/DOWN power ratio [p.u.]	Storage SOC [%]	
2	2022-01-0	01 00:00	95.86916	7.20513	5 7.20513	5 0.	598353143	3.90928	E-06	2.61211E-06	9.40142063	0.249306416	1.4	50	
3	2022-01-0	01 01:00	85.29684	8.1938	7 8.1938	7 0.	710415418	1.53343	E-05	4.29192E-06	0.001429775	1.311172677	1	43.0917	
4	2022-01-0	01 02:00	82.04209	7.20513	5 7.20513	5 0.	.896638617	2.10947	E-05	4.50155E-06	0.000711812	0.866000037	1.25	38.5301	
5	2022-01-0	01 03:00	78.56288	7.77313	2 7.77313	2 1.	225534644	9.08927	631	5.08527E-06	4.42717E-06	1.9798E-06	1.25	80.5907	
6	2022-01-0	01 04:00	81.25646	7.20513	5 7.20513	5 1.	545822129	2.031714	713	5.08817E-06	1.95117E-05	8.88145E-06	1.25	89.9924	
7	2022-01-0	01 05:00	87.29458	7.20513	5 7.20513	5 1.	752837605	0.007037	544	5.09296E-06	0.000718967	0.00497928	1.25	89.995	
8	2022-01-0	01 06:00	107.923	4.62811	4.62811	71.	927751965	2.92109	E-05	4.69044E-06	0.002112646	0.482928336	1.8	87.4423	
9	2022-01-0	01 07:00	113.8937	3.15553	3.155534	1 1.	.870894537	1.29163	E-05	4.17867E-06	2.121271279	0.399530294	1.4	74.175	
10	2022-01-0	01 08:00	115.7119	3.15553	3.155534	1 1.	.894019946	9.89901	E-06	3.9163E-06	3.045535801	0.352640335	1.8	56.2899	
11	2022-01-0	01 09:00	117.8443	3.0503	3.0503	5 4.	558149507	8.60116	E-06	3.75662E-06	4.041149862	0.252831029	1.4	33.6901	
12	2022-01-0	01 10:00	115.2405	1.66191	5 1.66191	5 9.	710194555	0.000113	799	5.01528E-06	0.283703271	0.008345752	! 1	32.1535	
13	2022-01-0	01 11:00	119.9992	1.68295	1.68295	2 9.	828809618	0.00016	128	5.05278E-06	0.169466632	0.00487034	I 1	31.2367	
14	2022-01-0	01 12:00	114.1631	2.90309	2.90309	L 9.	451753228	6.67227	E-05	4.93662E-06	0.50202514	0.027196914	1	28.4517	
15	2022-01-0	01 13:00	111.7164	3.15553	4 3.155534	1 9.	425697747	0.000188	492	5.05498E-06	0.104660591	0.03118772	1	27.7376	
16	2022-01-0	01 14:00	105.7681	4.20737	4.20737	1	0.09207812	0.001888	749	0.091972755	4.9627E-06	5.06292E-06	1	28.1719	
17	2022-01-0	01 15:00	105.4987	4.22841	5 4.22841	5 10	0.59830875	0.001975	462	0.598203258	4.80607E-06	4.73789E-06	1	30.9492	
18	2022-01-0	01 16:00	109.0453	3.89182	5 3.89182	5 8.	777996237	0.000205	585	5.05758E-06	0.002620626	0.080498582	1	30.5127	
19	2022-01-0	01 17:00	110.5941	3.15553	3.155534	1 3.	773133796	3.34753	E-05	4.74732E-06	0.443245856	0.358479094	1	26.2932	
20	2022-01-0	01 18:00	107.8107	4.20737	4.20737	9 2.	795859199	3.7406	E-05	4.78329E-06	0.002068016	0.524783362	1	23.5205	
4	A Year	B Hybric	C I Hybr	D id Hybr	E d Hybr	id	F Storage	G Storage	H Storag	e Storage	2		\		
1		investm	ent exper	ses pronts	is amortis	ation	on investmen	expenses	pronts	samortisati			All data series	used to	to
2	2021	19750	000	0	0	0	8380000	0		0	0		build the fina	l repo	ortís
3	2022		0 568	080 6470	128 19	75000	0	31560	781944	4.3 838	000		optimization	result	is
4	2023		0 59080	3.2 4626	137 19	/5000	0	32822.4	568078	3.8 838	000			ooure	
5	2024		0 6114	31.3 3927	399 19	75000	0	339/1.18	489213	3.1 838	000		nere.		
7	2025		0 6265	55.5 5057	751 10	75000	0	34710.33	438070		000				
0	2020		0 6462	57.0 5050	107 10	75000	0	25909.01	443440	0.0 0.00	000				
9	2028		0 6573	50.4 3411	506 19	75000	0	36519.47	409717	7.9 838	000				
10	2029		0 6685	25.4 3381	819 19	75000	0	37140.3	3990	11 838	000				
11	2030		0 6798	90.3 3462	303 19	75000	0	37771.68	397669	9.3 838	000				
12	2031		0 69144	18.4 3699	364 19	75000	0	38413.8	404422	2.1 838	000				
13	2032		0 70320	03.1 3780	751	0	0	39066.84	256780).2	0		Balance sheet	can	be
14	2033		0 7151	57.5 3826	785	0	-2882304.4	0		0	0		fully accompli	shed	bv
15	2034		0 7273	15.2 3782	795	0	0	0		0	0		using the d-t-		y
16	2035		0 7396	79.6 3949	964	0	0	0		0	0		using the data	preser	ited
17	2036		0 7522	54.1 4056	331	0	0	0		0	0		in the rest of the	e sheet	ts.
18	2037		0 76504	42.4 4141	700	0	0	0		0	0				
19	2038		0 77804	48.1 4143	386	0	0	0		0	0				
20	2039		0 791	275 4135	144	0	0	0		0	0				
21	2040		0 8047	26.6 4100	136	0	0	0		0	0				
22	2041		0 010	407 4070	721	0	0	0		0	0				

Strengths and key points

This methodology is **extremely compatible with any software** and **can be adapted with ease** e.g. to use any financial excel sheet to calculate any economic indices.

AREO can be used in any computer by any customer that want to calculate a complete financial analysis for a portfolio once a personalized **license of use** is given.

The only work that user is asked to fulfill is to gather all necessary data to fill some excel templates and double-click on the executable \triangle AREO.exe

Some **key points** are:

- **Results are clear and trustable** if provided data is so. There are no hidden or non traceable information that clients cannot check by their own.
- The solution is **designed for a full adaptability** to the client, i.e. it is the core for an ad-hoc designed methodology which **can combine any already used software** for e.g. data acquisition, data processing, financial and risk analysis... among others. Therefore **any variable can be optimised**.
- We can also **provide parametric studies**: e.g. how much the NVP varies w.r.t. certain parameters of interest (most commonly considered are financial but **infinite possibilities** can fit into the frame of parameterisation).
- System degradation, efficiencies and other parameters are taken into account along the project lifetime. Reposition of components (augmentation) can be also set.
- Running a full case for 20 years of 8760 data each one, should not take more than several minutes in a basic laptop. This time extends a little bit when restricting the maximum number of cycles the storage can perform for every year.

Contact Us

info@areoenergy.com